
System Extensions
Can you do alterations?

Oct 6, 1989

The Local Station system software has evolved over a number of years as new
features have been added and changed. This document describes procedures that
may be used to make some commonly-requested additions.

Add a new application page
This is done without any system code changes. After preparing the program

in S-record format using the cross compiler and/or assembler, find an area in
non-volatile memory (so the application will survive a power down) sufficient to
contain the linked application. Download the code into that area using the
Download Page to process the S-records sent to a serial port of one local station.
Go to the index page and find an available page slot to be used in calling up the
new application. Invoke the list of entry points of the applications associated
with each page by calling up the index page again with the hex switch (one of the
small console units buttons) depressed. Enter the starting address—which is
assumed to be the entry point—of the application area and press the interrupt
button with the cursor just beyond the last character of the 8-digit address with
the hex switch depressed. (Obviously, without the hex switch depressed, that page
would be invoked at the old entry address.) At this point, you should notice that
the newly-entered address is displayed as it was typed, and there is no “–” in the
second character position of the line. If there is a “–” present, it means that the
entry point address does not seem to be valid, and the system will refuse to
invoke it. It must be even and not too small, and it must point to a word of
memory with the value $47FA, the opword for a LEA disp(A3) instruction,
which must be the first instruction of every application page program. Then call
up the new application in the usual way.

To provide a title to the application, call up the page, type the 16-character title
on the top line starting in the third character position, and return to the index
page by placing the cursor in the home position and interrupting. The new title
will be available on the index page and at the top of the application page the next
time it is invoked.

System Extensions Oct 6, 1989 page 2

Add a new Data Access Table entry type
Design a 16-byte entry format to be used for the new type. The first byte is the

type#, a small positive value chosen by checking the branch table READS at the
end of the RDADNEW module. The second byte is assumed to be a destination
table#, which is usually $00 to denote the ADATA table for analog channel
readings or $05 to denote the BBYTE table for binary byte data readings. If there
no table# is required, set it to a negative value (like $FF) to denote that it is not a
table# to get around the check for the entry# being out of range for the table size.
(The auto-setting entry type uses this.) The next two bytes (the second word) are
assumed to be the destination table entry#, and is therefore a Chan# (for the
ADATA case) or a Byte# (for the BBYTE case).

Write a routine to process the entry and add its entry point to the branch table
READS mentioned above. If the routine is external to the RDADNEW module,
declare an XREF of course. The routine is called with registers set to the various
fields of the 8-word entry as follows:

table# D4.W A1.L

D5.L D2.W D3.W

type

In addition,
D1.L= offset to the destination table entry in the table
D6.W= #bytes/entry in destination table
A2.L= ptr to destination table entry
Condition codes set by TST.W D3 instruction

All registers may be altered by the routine except A3/A5/A6/A7. Examine other
routines for examples. The document entitled “RDATA Entry Formats” describes
the current entry types available.

System Extensions Oct 6, 1989 page 3
Add new Analog Control type

The SETAC module contains many routines selected by the analog control
type byte in the analog control field of the analog descriptor. That field is
currently 4 bytes in length. The first byte is the type# byte, and the meaning of
the other 3 bytes depends upon the type#. A setting to an analog channel device
results in a call to one of these routines.

To add a new type of analog control routine, design a data structure that can be
used for the analog control field:

type

Add a new routine reference to both the branch table SETACS and the branch
table SETREL at the end of the SETAC module. Write the SETACS routine
consistent with the following register-based calling sequence:

D4.W= dataword to be set
A0.L= ptr to analog control field of analog descriptor for this channel
A4.L= ptr to setting word in ADATA table for this channel

Any registers may be altered except A3/A5/A6/A7. By convention, the routine
should include copying the dataword into the setting word of the ADATA entry iff
no errors are detected in processing the setting. In this way, a readback of the
setting value (following the setting command) can determine whether a setting to
an analog channel was successful.

To support knob relative settings, the SETREL branch table invokes a routine
which scales the knob click, the dataword for the relative setting (listype=7) case,
based upon the analog control type. (This may not always be sufficient; the case
of 1553 analog control required a separate type# for 12-bit and 16-bit D/A
relative control.) The scaled knob click value plus the setting word forms the
intended setting value.

System Extensions Oct 6, 1989 page 4
Add a new read type routine

An entry in the Listype Table (module LTT) indexed by listype# includes a
read type#. The routine indexed by this value is in the READS table at the end of
the COLLECT module. (Don’t be confused by the name READS also being used in
the RDADNEW module; they are different branch tables.) It is invoked by an
application program’s call to Collect and also by the Update task when
updating network requests. (The Server task also calls it using CollectS.)

The routine has a register-based calling sequence. Upon entry to the routine,
D0.W= #idents–1 (or #internal ptrs – 1, since there is one ptr per ident)
D1.W= #bytes to return (>0)
A1.L= Ptr to array of internal ptrs (corresponding to original array of idents)
A2.L= Ptr to data array to be filled

The significance of an internal ptr depends on the code in the REQDGENP or
PREQDGEN modules that generated the internal ptr. It is typically a ptr to an entry
in a system table, or it may be a ptr into an external answer buffer, usually with
the sign bit set to indicate this, or it may be a ptr to a source of zeros—a null ptr.
Whatever it is, the read type routine must be aware of its possibilities.

Upon exit from the read type routine, the A2 register must be advanced past the
data area of answers produced in satisfying the array of idents. The calling
routine then will “even up” the A2 address so that the answers for the next
listype, if any, in the request will start on a word boundary. Note that an odd
#bytes in a data request will only result in a filler byte after processing the array
of idents. Normally, the only odd #bytes likely to be used is 1.

Also upon exit from the read type routine, if the condition code status indicates
overflow, the calling routine will assume a bus error occurred during processing
and will return an error code 4 to the user.

Besides the A2 register and the condition code status, all registers are available to
the read type routine, except A3/A5/A6/A7.

Most of the current read type routines are found in the COLLECT module.

System Extensions Oct 6, 1989 page 5
Add a new set type routine

An entry in the Listype Table (module LTT) indexed by listype# includes a set
type#. The routine indexed by this value is in the SETS table at the end of the
SETDATA module. It is invoked by an application program’s call to SetData and
also by the Network task when processing setting messages from the network.
There are two variations of set type routines. The first is used if the ptr type byte
is < 32, indicating a system table#. In this case, the ident is assumed to be a table
entry# and is checked to be within the range of the table. The second variation is
used if the ptr type byte is ≥ 32.

Upon entry to a set type routine,
D2.W= #bytes of data
D5.W= ptr info byte
D6.W= 0 if short ident, -2 if long ident
A1.L= ptr to data
A2.L= ptr to ident

In addition, if the ptr type < 32, system table parameters are made available as
D4.W= entry# from ident
A4.L= ptr to field in table entry (using D5.W as offset to field in entry)

Add a new ptr type routine
When adding a new read type routine, it is sometimes necessary to add a new

ptr type routine as well. The ptr type routine generates an internal ptr from an
ident. The read type routine generates answer data from an internal ptr. For
more explanation of ptr type routines, see the document entitled “Internal Ptrs.”

